
Learning	to	Optimize	
as	Policy	Learning

Yisong	Yue



Agent

Environment	/	World

Action	at

st+1

State/Context	st
Goal:	Find	“Optimal”	Policy

Imitation	Learning:

Optimize	imitation	loss

Reinforcement	Learning:

Optimize	environmental	reward

Policy	Learning		(Reinforcement	&	Imitation)

Learning-based	Approach	for

Sequential	Decision	Making



Basic	Formulation

• Policy:	! " → $(&)

• Roll-out:	τ = "*, &*, ",, &,, "-,…

• Objective:	∑ 0("1, &1)1

State Action

Transition	Function:	P(s’|s,a)

Imitation	&	Reinforcement	Learning

Agent

Environment	/	World

Action	at
(or	ut)

st+1

State/Context	st
Goal:	Find	“Optimal”	Policy

Imitation	Learning:
Optimize	imitation	loss

Reinforcement	Learning:
Optimize	environmental	reward

(Known	Dynamics	=>	Optimal	Control)

(Typically	a	Neural	Net)

(aka	trace	or	trajectory)



Optimization	as	Sequential	Decision	Making

• Many	Solvers	are	Sequential
• Tree-Search
• Greedy
• Gradient	Descent

• Can	view	solver	as	“agent”	or	“policy”
• State	=	intermediate	solution
• Find	a	state	with	high	reward	(solution)
• Learn	better	local	decision	making

• Formalize	Learning	Problem
• Builds	upon	modern	RL/IL

• Theoretical	Analysis/Guidance
• Interesting	Algorithms



Example	#1: Learning	to	Search	(Discrete)

�

Sparse	Reward
@	feasible	solution

State	=	partial	search	tree
(need	 to	featurize)

Action	=	variable	
selection	or	branching

[He	et	al.,	2014][Khalil	et	al.,	2016]	[Song	et	al.,	arXiv]

Integer	Program Tree-Search	(Branch	and	Bound)



Example	#1: Learning	to	Search	(Discrete)

�

Sparse	Reward
@	feasible	solution

State	=	partial	search	tree
(need	 to	featurize)

Action	=	variable	
selection	or	branching

[He	et	al.,	2014][Khalil	et	al.,	2016]	[Song	et	al.,	arXiv]

• Deterministic	State	Transitions
• Massive	State	Space
• Sparse	Rewards

Integer	Program Tree-Search	(Branch	and	Bound)



Example	#2: Learning	Greedy	Algorithms	(discrete)

Contextual	Submodular	Maximization: &02max
6: 6 89

:;(Ψ)

Dictionary	of	Trajectories Select	Diverse	Set

Context	/	Environment
Selected	Elements

Learning	Policies	for	Contextual	Submodular	Prediction	S.	Ross,	R.	Zhou,	Y.	Yue,	D.	Dey,	J.A.	Bagnell.		ICML	2013

Submodular	Utility

• Greedy	Sequential	Selection:
• Ψ ← Ψ	⨁ 	argmax

B
:;(Ψ⨁&)

• Train	policy	to	mimic	greedy:
• ! " → &

Not	Available	at	Test	Time

State	s	=	(C, D)



Example	#2: Learning	Greedy	Algorithms	(discrete)

Contextual	Submodular	Maximization: &02max
6: 6 89

:;(Ψ)

Dictionary	of	Trajectories Select	Diverse	Set

Context	/	Environment
Selected	Elements

Learning	Policies	for	Contextual	Submodular	Prediction	S.	Ross,	R.	Zhou,	Y.	Yue,	D.	Dey,	J.A.	Bagnell.		ICML	2013

Submodular	Utility

• Greedy	Sequential	Selection:
• Ψ ← Ψ	⨁ 	argmax

B
:;(Ψ⨁&)

• Train	policy	to	mimic	greedy:
• ! " → &

Not	Available	at	Test	Time

State	s	=	(C, D)

• Deterministic	State	Transitions
• Massive	State	Space
• Dense	Rewards
• Note:	Not	Learning	Submodular	Function



Example	#3: Iterative	Amortized	Inference	(continuous)

Iterative	Amortized	Inference,	Joe	Marino,	Yisong	Yue,	Stephan	Mandt.		ICML	2018

Gradient	Descent	Style	Updates:

Useful	for	Accelerating	Variational	Inference

• State	=	description	of	problem	&	current	point
• Action	=	next	point



Example	#3: Iterative	Amortized	Inference	(continuous)

Iterative	Amortized	Inference,	Joe	Marino,	Yisong	Yue,	Stephan	Mandt.		ICML	2018

Gradient	Descent	Style	Updates:

Useful	for	Accelerating	Variational	Inference

• (Mostly)	Deterministic	State	Transitions
• Continuous	State	Space
• Dense	Rewards
• Simplest	Case:	One-Shot	Inference

• “Variational	Autoencoders”	[Kingma &	Welling,	 ICLR	2014]

• State	=	description	of	problem	&	current	point
• Action	=	next	point



Optimization	as	Sequential	Decision	Making
Learning	to	Search
• Discrete	Optimization	(Tree	Search),	Sparse	Rewards
• Learning	to	Search	via	Retrospective	Imitation [arXiv]

• Co-training	for	Policy	Learning [UAI	2019]

Contextual	Submodular	Maximization
• Discrete	Optimization	(Greedy),	Dense	Rewards
• Learning	Policies	for	Contextual	Submodular	Prediction [ICML	2013]

Learning	to	Infer
• Continuous	Optimization	(Gradient-style),	Dense	Rewards
• Iterative	Amortized	Inference [ICML	2018]

• A	General	Method	for	Amortizing	Variational	Filtering [NeurIPS 2018]

Stephane	Ross

Joe	Marino

Jialin Song



Optimization	as	Sequential	Decision	Making
Learning	to	Search
• Discrete	Optimization	(Tree	Search),	Sparse	Rewards
• Learning	to	Search	via	Retrospective	Imitation [arXiv]

• Co-training	for	Policy	Learning [UAI	2019]

Contextual	Submodular	Maximization
• Discrete	Optimization	(Greedy),	Dense	Rewards
• Learning	Policies	for	Contextual	Submodular	Prediction [ICML	2013]

Learning	to	Infer
• Continuous	Optimization	(Gradient-style),	Dense	Rewards
• Iterative	Amortized	Inference [ICML	2018]

• A	General	Method	for	Amortizing	Variational	Filtering [NeurIPS 2018]

Stephane	Ross

Joe	Marino

Jialin Song



Learning	to	Optimize	for	Tree	Search

• Idea	#1:	Treat	as	Standard	RL

• Randomly	explore	for	high	rewards
• Very	hard	exploration	problem!

• Issues:	massive	state	space	&	sparse	rewards �



Learning	to	Optimize	for	Tree	Search

• Idea	#2:	Treat	as	Standard	IL

• Convert	to	Supervised	Learning
• Assume	access	to	solved	instances

• Training	Data: E* = 							,							

• Basic	IL:	argmin
H∈J

KLM(!) ≡ O P,B ~LM ℓ(&, ! " )

�

Behavioral	Cloning

“Demonstration	Data”



Challenges	w/	Imitation	Learning

• Issues	with	Behavioral	Cloning
• Minimize	KLM … implications?
• If	! makes	a	mistake	early,	subsequent	state	distribution	≈	E* ??
• Some	extensions	to	Interactive	IL		[He	et	al.,	NeurIPS 2014]

• Demonstrations	not	Available	on	Large	Problems
• How	to	(formally)	bootstrap	from	smaller	problems?
• Bridging	the	gap	between	IL	&	RL

Our	Approach	is	also	Interactive	IL

Our	Approach	gives	one	solution



Retrospective	Imitation

• Given:	
• Family	of	Distributions	of	Search	problems

• Family	is	parameterized	by	size/difficulty
• Solved	Instances	on	the	Smallest/Easiest	Instances

• “Demonstrations”

• Goal:
• Interactive	IL	approach
• Can	Scale	up	from	Smallest/Easiest	Instances
• Formal	Guarantees

Jialin
Song

Ravi
Lanka

Learning	to	Search	via	Retrospective	Imitation,	Jialin Song,	 Ravi	Lanka,	et	al.,	arXiv

Connections	to	Curriculum	Learning	

&	Transfer	Learning

Difficulty	levels:	k=1,…,K



Retrospective	Imitation

• Two-Stage	Algorithm

• Core	Algorithm
• Fixed	problem	difficulty
• Reductions	to	Supervised	Learning

• Full	Algorithm	w/	Scaling	Up
• Uses	Core	Algorithm	as	Subroutine

Interactive	IL	w/	Sparse	Environmental	Rewards

Learning	to	Search	via	Retrospective	Imitation,	Jialin Song,	 Ravi	Lanka,	et	al.,	arXiv



Supervised	Learning	
Reduction

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Learning to Search via Retrospective Imitation

· · ·

· · · · · ·

· · ·

...

? · · · · · ·

· · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·

Expert Trace

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

...

? · · ·

· · ·

· · ·

· · ·

· · · · · ·

· · ·

Roll-out Trace

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

...

? · · ·

· · ·

· · ·

· · ·

· · · · · ·

· · ·

Region A

Region B

Imitation
Learning

Policy

Retrospective Oracle Feedback

1� Initial Learning

2� Policy Roll-out (optional exploration)

3� Retrospective Oracle
(Algorithm 2)

4� Policy Update with Further Learning

Figure 1. A visualization of retrospective imitation learning depicting components of Algorithm 1. An imitation learning policy is
initialized from expert traces and is rolled out to generate its own traces. Then the policy is updated according to the feedback generated
by the retrospective oracle as in Figure 2. This process is repeated until some termination condition is met.

E

F

· · ·

· · · · · · G

· · ·

H

...

I

· · ·

M

? · · · N

· · ·

Figure 2. Zoom-in views of Region A and B in Figure 1. At node
E , the retrospective feedback indicates selecting node H over F , G
and I . At node M , the ? node is preferred over N .

4. Retrospective Imitation Learning
We now describe the retrospective imitation learning ap-
proach. It is a general framework that can be combined
with a variety of imitation learning algorithms. For clar-
ity of presentation, we instantiate our approach using the
data aggregation algorithm (DAgger) (Ross et al., 2011; He
et al., 2014) and we call the resulting algorithm Retrospec-
tive DAgger. We also include the instantiation with SMILe
(Ross & Bagnell, 2010) in Appendix A. In Section 6, we em-
pirically evaluate retrospective imitation with both DAgger
and SMILe to showcase the generality of our framework.

We decompose our general framework into two steps. First,
Algorithm 1 describes our core procedure for learning on
fixed size problems with a crucial retrospective oracle sub-
routine (Algorithm 2). Algorithm 3 then describes how to
scale up beyond the fixed size. We will use Figure 1 as a
running example. The ultimate goal is to enable imitation

Algorithm 1: Retrospective DAgger for Fixed Size
1 Inputs:
2 N : number of iterations
3 º1: initial policy trained on expert traces
4 Æ: mixing parameter
5 {P j }: a set of training problem instances
6 D0: expert traces dataset
7 initialize D = D0
8 for i √ 1 to N do
9 º̂i √Æºi + (1°Æ)ºexplor e (optionally explore)

10 run º̂i on {P j } to generate a set of search traces {ø j }
11 for each ø j , compute º§(ø j , s) for each terminal state s

(Algorithm 2)
12 collect new dataset Di based on each º§(ø j , s)
13 update D with Di (i.e., D √ D [Di )
14 train ºi+1 on D
15 end
16 return best ºi on validation

learning algorithms to scale up to problems much larger
than those for which we have expert demonstrations, which
is a significant improvement since conventional imitation
learning cannot naturally accomplish this.

Core Algorithm for Fixed Problem Size. We assume ac-
cess to an initial dataset of expert demonstrations to help
bootstrap the learning process, as described in Line 3 in
Algorithm 1 and depicted in step 1� in Figure 1. Learning
proceeds iteratively. In Lines 9-10, the current policy (po-

Retrospective	Imitation	(Core	Algorithm)

Learning	to	Search	via	Retrospective	Imitation,	Jialin Song,	 Ravi	Lanka,	et	al.,	arXiv

Derived	from	Sparse
Environmental Rewards

Repeat



Retrospective	Imitation	(Full	Algorithm)

Learning	to	Search	via	Retrospective	Imitation,	Jialin Song,	 Ravi	Lanka,	et	al.,	arXiv

Initialize	k=1

Initialize

Gurobi/SCIP/CPlex

k=k+1

Use	trained	S

Problem	

Difficulty	k

Base	Solver

Instances	&

Demonstrations
Core	Algorithm



Learning	to	Search	via	Retrospective	Imitation,	Jialin Song,	 Ravi	Lanka,	et	al.,	arXiv

Core	Algorithm

• Does	this	converge?
• Converges	to	what?



yisongyue.com hoangle.info

https://sites.google.com/view/icml2018-imitation-learning/

Yisong	Yue			 Hoang	M.	Le

yyue@caltech.edu hmle@caltech.edu

@YisongYue @HoangMinhLe

Imitation	Learning	Tutorial	(ICML	2018)



Issues	w/	Distribution	Drift	&	Imitation	Signal

• Demonstrations	from	initial	Solver:	E* = 							,							

• Supervised	learning:			argmin
H∈J

KLM(!) ≡ O P,B ~LM ℓ(&, ! " )

“correct”	decision	in	this	state

Which	input	states?

Correct	relative	to	what?

If	S achieves	low	error	on	TU,	so	what?

Oracle	call	to	TensorFlow/PyTorch/etc…



Interactive	Imitation	Learning	(Core	Alg)

• First	popularized	by [Daume et	al.,	2009]	[Ross	et	al.,	2011]

• Basic	idea:	
• Train	!1V, = argmin

H∈J
KLWXY(!)

• Roll-out	!1V,,	collect	traces	 Z

• Demonstrator	converts	 Z into	per-state	feedback:	E[1
• E1 = E[1 ∪ E1V,

Search-based	Structured	Prediction,	Daume,	Langford,	Marcu,	Machine	Learning	Journal	2009
A	Reduction	of	Imitation	Learning	and	Structured	Prediction	to	No-Regret	Online	Learning,	Ross,	Gordon,	Bagnell,	AISTATS	2011

i=i+1
Run	on	instances

Depends	on	what	is	“correct”	

Supervised	Learning

Data	aggregation



Interactive	Imitation	Learning	(Core	Alg)

• First	popularized	by [Daume et	al.,	2009]	[Ross	et	al.,	2011]

• Basic	idea:	
• Train	!1V, = argmin

H∈J
KLWXY(!)

• Roll-out	!1V,,	collect	traces	 Z

• Demonstrator	converts	 Z into	per-state	feedback:	E[1
• E1 = E[1 ∪ E1V,

Search-based	Structured	Prediction,	Daume,	Langford,	Marcu,	Machine	Learning	Journal	2009
A	Reduction	of	Imitation	Learning	and	Structured	Prediction	to	No-Regret	Online	Learning,	Ross,	Gordon,	Bagnell,	AISTATS	2011

i=i+1
Run	on	instances

Depends	on	what	is	“correct”	

Supervised	Learning

Data	aggregation

Learns	to	Correct	its	Own	Mistakes

Convergence	Guarantees:

• ∑ KLW(!1)
]
1^* → minH∈J ∑ KLW(!)

]
1^*

• Follow-the-Leader	argument
• Also	studied	in	[He	et	al.,	NeurIPS 2014]
Requires	defining	“correct”

• Retrospective	Oracle



Policy	Rollout	

��:	best	solution	found	by

Retrospective	Oracle



Retrospective	Oracle	Feedback

Feedback:	(red	>	white)	
for	all	(red,	white)	pairs	
in	the	trajectory

�

Retrospective	Oracle



Policy	Rollout

�

Retrospective	Oracle



Retrospective	Oracle	Feedback

�

Retrospective	Oracle

Feedback:	(red	>	white)	
for	all	(red,	white)	pairs	
in	the	trajectory



Policy	Rollout

�

Retrospective	Oracle



Core	Algorithm	Summary

• Sequence	of	Learning	Reductions

• Leverages	Retrospective	Oracle	to	Define	“Correct”
• Relies	on	sparse	environmental	rewards

• Converges	to	near-optimal	policy	in	class
• Offloads	computational	challenges	to	Supervised	Learning	Oracle

• For	supervised	learning	error	_:

Expected	Search	Length	=	 `
∗

,V-b

Optimal	Search	Length

(typically	#	integer	variables)

Learning	to	Search	via	Retrospective	Imitation,	Jialin Song,	 Ravi	Lanka,	et	al.,	arXiv



Guarantees	for	Full	Algorithm

• Run	!c on	problems	of	difficulty	k+1
• Initial	demonstrations	for	the	harder	problem	instances

• Suppose: we	could	have	run	external	solver	on	harder	instances

• Suppose:	search	trace	includes	feasible	solution	of	external	solver

• Then	!c is	as	good	as	using	original	external	solver!	
• (might	take	longer	to	converge)

Learning	to	Search	via	Retrospective	Imitation,	Jialin Song,	 Ravi	Lanka,	et	al.,	arXiv

Gurobi/SCIP/CPlex/Etc…



(a) (b) (c)

Figure 4: (left) Retrospective imitation versus off-the-shelf methods. The RL baseline performs very poorly due to sparse
environmental rewards. (middle, right) Single-step decision error rates, used for empirically validating theoretical claims.

(a) (b) (c)

Figure 5: Retrospective DAgger (“select only” policy class) with off-the-shelf branch-and-bound solvers using various search
node budgets. Retrospective DAgger consistently outperforms baselines.

the results on a range of search size limits. We see that
Retrospective DAgger (“select only”) is able to consistently
achieve the lowest optimality gaps, and the optimality gap
grows very slowly as the number of integer variables scale
far beyond the base problem scale. As a point of compar-
ison, the next closest solver, Gurobi, has optimality gaps
ª 50% higher than Retrospective DAgger (“select only”) at
14 waypoints (560 binary variables).

Empirically Validating Theoretical Results. Finally, we
evaluate how well our theoretical results in Section 5 char-
acterizes experimental results. Figure 4b and 4c presents
the optimal move error rates for the maze experiment,
which validates Proposition 1 that retrospective imitation
is guaranteed to result in a policy that has lower error rates
than imitation learning. The benefit of having a lower error
rate is explained by Theorem 2, which informally states that
a lower error rate leads to shorter search time. This result
is also verified by Figure 2a and 2d, where Retrospective
DAgger/SMILe, having the lowest error rates, explores the
fewest number of squares at each problem scale.

7 Conclusion & Future Work
We have presented the retrospective imitation approach
for learning combinatorial search policies. Our approach
extends conventional imitation learning, by being able to
learn good policies without requiring repeated queries to
an expert. A key distinguishing feature of our approach is

the ability to scale to larger problem instances than con-
tained in the original supervised training set of demonstra-
tions. Our theoretical analysis shows that, under certain
assumptions, the retrospective imitation learning scheme
is provably more powerful and general than conventional
imitation learning. We validated our theoretical results on
a maze solving experiment and tested our approach on the
problem of risk-aware path planning, where we demon-
strated both performance gains over conventional imita-
tion learning and the ability to scale up to large problem
instances not tractably solvable by commercial solvers.

By removing the need for repeated expert feedback, ret-
rospective imitation offers the potential for increased appli-
cability over imitation learning in search settings. However,
human feedback is still a valuable asset as human computa-
tion has been shown to boost performance of certain hard
search problems [Le Bras et al., 2014]. It will be interesting
to incorporate human computation into the retrospective
imitation learning framework so that we can find a balance
between manually instructing and autonomously reason-
ing to learn better search policies. Retrospective imitation
lies in a point in the spectrum between imitation learning
and reinforcement learning; we are interested in exploring
other novel learning frameworks in this spectrum as well.

B
	E
	T
	T
	E
	R

Our	Approach

Gurobi

SCIP

Initial	demonstrations
only	at	smallest	size!

More	experiments
in	paper

Learning	to	Search	via	Retrospective	Imitation,	Jialin Song,	 Ravi	Lanka,	et	al.,	arXiv



Learning to Search via Retrospective Imitation

(a) (b) (c)

(d) (e) (f)
Figure 3. Retrospective imitation versus DAgger (top) and SMILe (bottom) for maze solving (left) and risk-aware path planning (middle
and right). “Extrapolation” is the conventional imitation learning baseline, and “Cheating” (left column only) gives imitation learning
extra training data. Retrospective imitation consistently and significantly outperforms imitation learning approaches in all settings.

Figure 4. Left to right: comparing Manhattan distance heuristic,
DAgger Cheating and Retrospective DAgger on a 31£31 maze
starting at upper left and ending at lower right. Yellow squares are
explored. Optimal path is red. The three algorithms explore 333,
271 and 252 squares, respectively.

MILPs with a very slow optimality gap growth suggests that
our approach is performing effective transfer learning.

Minimum vertex cover is a challenging setting where it is
infeasible to compute the optimal solution (even with large
computational budgets). We thus plot relative differences
in objective with respect to retrospective imitation. We see
in Figure 7 that retrospective imitation consistently outper-
forms conventional imitation learning.

Comparing Retrospective Imitation with Off-the-Shelf
Approaches. For maze solving, we compare with: 1) A*
search with the Manhattan distance heuristic, and 2) be-
havioral cloning followed by reinforcement learning with
a deep Q-network (Mnih et al., 2015). Figure 5a shows
Retrospective DAgger outperforming both methods. Due
to the sparsity of the environmental rewards (only positive

reward at terminal state), reinforcement learning performs
significantly worse than even the Manhattan heuristic.

For risk-aware path planning and minimum vertex cover, we
compare with a commercial solver Gurobi (Version 6.5.1)
and SCIP (Version 4.0.1, using Gurobi as the LP solver).
We implement our approach within the SCIP (Achterberg,
2009) integer programming framework. Due to differences
in implementation, we use the number of explored nodes
as a proxy for runtime. We control the search size for
Retrospective DAgger (“select only”) and use its resulting
search sizes to control Gurobi and SCIP. Figures 6 & 7 show
the results on a range of search size limits. We see that
Retrospective DAgger (“select only”) is able to consistently
achieve the lowest optimality gaps, and the optimality gap
grows very slowly as the number of integer variables scale
far beyond the base problem scale. As a point of comparison,
the next closest solver, Gurobi, has an optimality gap ª
50% higher than Retrospective DAgger (“select only”) at
14 waypoints (560 binary variables) in the risk-aware path
planning task and a performance gap of ª 40% compared
with Retrospective DAgger at the largest graph scale for
minimum vertex cover.

Empirically Validating Theoretical Results. Finally, we
evaluate how well our theoretical results in Section 5 charac-
terizes our experimental results. Figure 5b and 5c presents
the optimal move error rates for the maze experiment, which
validates Proposition 1 that retrospective imitation is guar-
anteed to result in a policy that has lower error rates than

Learning to Search via Retrospective Imitation

(a) (b) (c)

(d) (e) (f)
Figure 3. Retrospective imitation versus DAgger (top) and SMILe (bottom) for maze solving (left) and risk-aware path planning (middle
and right). “Extrapolation” is the conventional imitation learning baseline, and “Cheating” (left column only) gives imitation learning
extra training data. Retrospective imitation consistently and significantly outperforms imitation learning approaches in all settings.

Figure 4. Left to right: comparing Manhattan distance heuristic,
DAgger Cheating and Retrospective DAgger on a 31£31 maze
starting at upper left and ending at lower right. Yellow squares are
explored. Optimal path is red. The three algorithms explore 333,
271 and 252 squares, respectively.

MILPs with a very slow optimality gap growth suggests that
our approach is performing effective transfer learning.

Minimum vertex cover is a challenging setting where it is
infeasible to compute the optimal solution (even with large
computational budgets). We thus plot relative differences
in objective with respect to retrospective imitation. We see
in Figure 7 that retrospective imitation consistently outper-
forms conventional imitation learning.

Comparing Retrospective Imitation with Off-the-Shelf
Approaches. For maze solving, we compare with: 1) A*
search with the Manhattan distance heuristic, and 2) be-
havioral cloning followed by reinforcement learning with
a deep Q-network (Mnih et al., 2015). Figure 5a shows
Retrospective DAgger outperforming both methods. Due
to the sparsity of the environmental rewards (only positive

reward at terminal state), reinforcement learning performs
significantly worse than even the Manhattan heuristic.

For risk-aware path planning and minimum vertex cover, we
compare with a commercial solver Gurobi (Version 6.5.1)
and SCIP (Version 4.0.1, using Gurobi as the LP solver).
We implement our approach within the SCIP (Achterberg,
2009) integer programming framework. Due to differences
in implementation, we use the number of explored nodes
as a proxy for runtime. We control the search size for
Retrospective DAgger (“select only”) and use its resulting
search sizes to control Gurobi and SCIP. Figures 6 & 7 show
the results on a range of search size limits. We see that
Retrospective DAgger (“select only”) is able to consistently
achieve the lowest optimality gaps, and the optimality gap
grows very slowly as the number of integer variables scale
far beyond the base problem scale. As a point of comparison,
the next closest solver, Gurobi, has an optimality gap ª
50% higher than Retrospective DAgger (“select only”) at
14 waypoints (560 binary variables) in the risk-aware path
planning task and a performance gap of ª 40% compared
with Retrospective DAgger at the largest graph scale for
minimum vertex cover.

Empirically Validating Theoretical Results. Finally, we
evaluate how well our theoretical results in Section 5 charac-
terizes our experimental results. Figure 5b and 5c presents
the optimal move error rates for the maze experiment, which
validates Proposition 1 that retrospective imitation is guar-
anteed to result in a policy that has lower error rates than

Comparisons	w/	Conventional	IL

Learning	to	Search	via	Retrospective	Imitation,	Jialin Song,	 Ravi	Lanka,	et	al.,	arXiv



Retrospective	Imitation

• Two-Stage	Algorithm
• Leverages	Supervised	Learning	Oracle

• Initial	demonstrations	on	small	problems

• Exploits	sparse	environmental	reward
• “Retrospective	Oracle”

• Iteratively	scale	up	to	harder	problems



Co-Training	for	Policy	Learning
(Multiple	Views)

Graph	View Integer	Program	View
(Branch	&	Bound	View)

Example:	Minimum	Vertex	Cover

[Khalil	et	al.,	2017] [He	et	al.,	2014]

Jialin
Song

Ravi
Lanka



Co-Training	for	Policy	Learning
(Multiple	Views)

Example:	Different	Types	of	Integer	Programs

ILP QCQP

Jialin
Song

Ravi
Lanka



Co-Training [Blum	&	Mitchell,	1998]

• Many	learning	problems	have	different	sources	of	information

• Webpage	Classification:	Words	vs	Hyperlinks
My AdvisorProf. Avrim Blum My AdvisorProf. Avrim Blum

x2- Text infox1- Link infox - Link info & Text info

(Taken	from	Nina	Balcan’s slides)



What’s	Different	about	Policy	Co-Training?

• Sequential	Decisions	vs	1-Shot	Decisions

• (Sparse)	Environmental	Feedback
• Can	collect	more	“labels”

• Different	Action	Spaces
• Graph	vs	Branch-and-Bound

(Not	always	applicable)

Co-training	for	Policy	Learning, Jialin Song,	 Ravi	Lanka,	et	al.,	UAI	2019



Intuition

MVC	Instance

[1]	“Learning	combinatorial	optimization	algorithms	over	graphs”	[Khalil	et	al.,	2017]
[2]	“Learning	 to	Search	 in	Branch	and	Bound	Algorithms”	[He	et	al.,	2014]
[3]	“Learning	 to	Search	via	Retrospective	 Imitation”	[Song	et	al.,	2019]

E.g.,	[1]

E.g.,	[2,3]



Intuition

MVC	Instance

!,

!-
Better!

E.g.,	[1]

E.g.,	[2,3]

[1]	“Learning	combinatorial	optimization	algorithms	over	graphs”	[Khalil	et	al.,	2017]
[2]	“Learning	 to	Search	 in	Branch	and	Bound	Algorithms”	[He	et	al.,	2014]
[3]	“Learning	 to	Search	via	Retrospective	 Imitation”	[Song	et	al.,	2019]



Intuition

MVC	Instance
Demonstration

!,

!-

E.g.,	[1]

E.g.,	[2,3]

[1]	“Learning	combinatorial	optimization	algorithms	over	graphs”	[Khalil	et	al.,	2017]
[2]	“Learning	 to	Search	 in	Branch	and	Bound	Algorithms”	[He	et	al.,	2014]
[3]	“Learning	 to	Search	via	Retrospective	 Imitation”	[Song	et	al.,	2019]

Better!



Theoretical	Insight

• Different	representations	differ	in	hardness
• Goal:	quantify	improvement

Ω: all	problems

Ω,: representation	1	easier

Ω-: representation	2	easier

Co-training	for	Policy	Learning, Jialin Song,	 Ravi	Lanka,	et	al.,	UAI	2019



(Towards)	a	Theory	of	Policy	Co-Training

• Two	MDP	“views”:	e, &	e-

• f,→- Z, ⟹ Z- (and	vice	versa)

• Realizing	Z, on	e, ⟺ realizing	Z- on	e-

• Question: when	does	having	two	views/policies	help?
• Policy	Improvement	(next	slide)	

• Builds	upon	[Kang	et	al.,	ICML	2018]
• Optimality	Gap	for	Shared	Action	Spaces	(in	paper)

• Builds	upon	[DasGupta et	al.,	NeurIPS 2002]

“Trajectory”	/	“Rollout”



Policy	Improvement	Bound

i !′, ≥ iHY !′
, −

2n op
, _p

, + 4spt
- _pt

-

1 − n - + vpt
-

Approximation	by

sampling	from	Sw
DiscountPerformance	

of	new	policy

(either	RL	or	IL)

Performance	Gap	of !- over !, on x-:	
i !- e~x- − i !, e~x-

JS	Divergence	of		

!- vs		!, on	x-

1-step	suboptimalityof	!- on	x-KL	Divergence	of	!, vs		!′, on	x

1-step	suboptimality

of		!, on x

Ω: all	instances

Ω,: !, better

Ω-: !- better

Builds	upon	 theoretical	results	from	[Kang	et	al.,	ICML	2018]

Standard	for	

Policy	Gradient
Want	to	Minimize

Want	to	Maximize



Policy	Improvement	Bound	(Summary)

• Minimizing	spt
- →	low	disagreement	between	!- vs	!,

• Maximizing	vpt
- →	high	performance	gap	!- over	!, on	some	MDPs

i !′, ≥ iHY !′
, −

2n op
, _p

, + 4spt
- _pt

-

1 − n - + vpt
-



CoPiEr Algorithm	(Co-training	for	Policy	Learning)

e, e-

Run	!, → Z, Run	!- → Z-

Sample	e~Ω

Exchange (only	showing	1	version)

If	!, better:	Z′- = f,→-(Z,),	Z′, = ∅
If	!- better:	Z′, = f-→,(Z-),	Z′- = ∅

Rollout

Update (only	showing	1	view)

Augmented	Obj:	iz !{ = iH !{ − |K !{, Z{

Take	gradient	step

Co-training	for	Policy	Learning, Jialin Song,	 Ravi	Lanka,	et	al.,	UAI	2019



B
	E
	T
	T
	E
	R

Erdős–Rényi
(100-500	vertices)

RL	on	Graph	View
[Khalil	et	al.,	2017]

IL	on	MILP	View
[He	et	al.,	2014]

More	experiments	
in	paper

Strong	vs	Baselines	

(w/o	Co-Training)

CoPiEr Final Outperforms	

Individual	Views

Strong	vs	Gurobi



Ongoing: Integration	with	ENav
Ravi
Lanka

Hiro
Ono

Olivier
Toupet

Neil
Abcouwer



• Planning	for	3D	Inkjet	Droplet	Printing

Ongoing: Additive	Manufacturing
Uduak

Inyang-Udoh
Jialin
Song

Sandipan
Mishra

Yue, Yisong
WI 2018-19CS 101B Sec. 01 - Special Topics in Computer Science

0002043782.jpg

rbal@caltech.edu

Bal
Roshan Singh
Junior (CS)

0002019355.jpg

pbuabthong@caltech.edu

Buabthong
Pakpoom (Pai)
G3 (MS)

0001959087.jpg

michaelangelo@caltech.edu

Caporale
Michaelangelo Valentino 
Senior (ACM)

0002044133.jpg

sding@caltech.edu

Ding
Stephanie Qiu Li
Junior (CS)

0002014909.jpg

kpark2@caltech.edu

Park
Kinam (Danny)
Senior (CS)

0002015416.jpg

azwang@caltech.edu

Wang
Andrew Zeyu
Senior (CS)

11-Dec-18 11:41:04 AM

Stephanie
Ding

Experiment: Setup
● Two structures: square and cross

● Two parameters decide # of integer variables
○ Grid size of each layer
○ # of control receding horizon

● We implement the learning to search framework
with SCIP, an open source integer program solver



Iterative	Amortized	Inference	
(for	Deep	Probabilistic	Models)

Joe	Marino

Iterative	Amortized	Inference,	Joe	Marino	et	al.,	ICML	2018
A	General	Framework	for	Amortizing	Variational	Filtering,	Joe	Marino	et	al,	NeurIPS 2018

B
	E
	T
	T
	E
	R

Related	to	“Learning	to	Learn” [Andychowicz et	al.,	2016]	



Ongoing: Amortized	Planning
Yujia
Huang

Sophie
Dai

Hao
Liu

Tongxin
Li

Folds here Folds here

• Why L2P is more stable?
• Actions are more stable

• Finding a global optimal may not be the 
best choice!

Reward
Traning
Testing

Learning to Learn for Planning and Beyond
Tongxin LI; Sihui Dai; Hao Liu; Yujia Huang; Tanvi Gupta

California Institute of Technology

[1] J. Marino, Y. Yue, and S. Mandt, “Iterative amortized inference,” arXiv preprint arXiv:1807.09356, 2018
[2] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson, “Learning latent dynamics for planning from pixels,” arXiv preprint arXiv:1811.04551, 2018
[3] C. Cremer, X. Li, and D. Duvenaud, “Inference suboptimality in variational autoencoders,” arXiv preprint arXiv:1801.03558 , 2018
[4] R. Shu, H. H. Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon, “Amortized inference regularization,” in Advances in Neural Information Processing Systems, 2018, pp. 4393–4402
[5] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013

References

• Model-based Reinforcement learning:

• Recurrent  Gradient-based Planning
• Inefficient

• Amortization [5]
• Inaccurate

• Learning to plan [1]

Motivation

Introduction

• We define our algorithm for learned planning (L2P) as follows:

L2P: Learn an inference model to infer the action.
Update the parameter of inference model during training.

• We compare with gradient based planning (GP) and
cross entropy method (CEM) described below:
GP: Update actions based on gradient of reward model.

CEM: Population based genetic algorithm.

Methods Discussion

Conclusions

Learning dynamics:

Planning:

Optimize:

Results

We thank the TA Joe Marino, for advising our project 
with extremely useful lectures, meetings and follow-up 
discussions. Special thanks to our instructor Yisong Yue, 

for providing us with the excellent topics in deep 
probabilistic models.

Acknowledgements

Future Directions

Comparison

Optimality Convergence Rate Stability

Cross Entropy Method 
(CEM) [2]

Converge to optimal after 
sufficiently many 

samplings
No guarantee High variance

Gradient-based
Planning(GP)

Reach optimal after 
enough iterations

More iterations are 
necessary

High Variance

Learning to Plan (L2P)
No guarantee, but 

distance from optimal 
upper bounded

Fewer than needed for 
gradient based

Low variance

Plan 1 Plan 2 Plan N…

Iterations

CEM GP L2P

Performance comparison in noiseless case

L2PGP

Performance comparison in noisy case:

Theorem: Suppose      and      are Lipschitz continuous 
functions. Then the “amortized gap”[3,4] for planning is 
bounded from above by

CEM

Reinforcement learning       Variational Inference

mean std.

CEM 4.33 4.56

GP 111.41 21.08

L2P 130.77 1.37

mean std.

CEM 3.13 8.36

GP 7.28 6.89

L2P 7.65 6.78

• Comparison between CEM, GP and L2P

• L2P provides robustness

• Transition model is more important than 
reward model

Baseline:	Gradient-based	Planning

Can	use	(offline)	training	to	amortize?



Learning	to	Optimize	as	Policy	Learning

• Optimization	as	Sequential	Decision	Making

• Formulate	New	Learning	Problems
• Builds	upon	RL/IL

• Interesting	Algorithms
• Theoretical	Analysis/Guidance
• Good	Empirical	Performance

�

Imitation	&	Reinforcement	Learning

Agent

Environment	/	World

Action	at
(or	ut)

st+1

State/Context	st
Goal:	Find	“Optimal”	Policy

Imitation	Learning:
Optimize	imitation	loss

Reinforcement	Learning:
Optimize	environmental	reward

(Known	Dynamics	=>	Optimal	Control)



Jialin
Song

Ravi
Lanka

Joe
Marino

Stephane
Ross

Aadyot
Bhatnagar

Albert
Zhao

Milan
Cvitkovic

Robin
Zhou

Debadeepta
Dey

Stephan
Mandt

Hiro
Ono

Drew
Bagnell

Learning	to	Search	via	Retrospective	Imitation,	Jialin Song,	Ravi	Lanka,	et	al.,	arXiv
Co-Training	for	Policy	Learning,	Jialin Song,	Ravi	Lanka,	et	al.,	UAI	2019
Learning	Policies	for	Contextual	Submodular	Optimization,	Stephane	Ross	et	al.,	ICML	2013
Iterative	Amortized	Inference,	Joe	Marino	et	al.,	ICML	2018
A	General	Framework	for	Amortizing	Variational	Filtering,	Joe	Marino	et	al,	NeurIPS 2018

https://github.com/ravi-lanka-4/CoPiEr
https://github.com/joelouismarino/iterative_inference

Olivier
Toupet

Neil
Abcouwer

Uduak
Inyang-Udoh

Sandipan
Mishra

Yujia
Huang

Sophie
Dai

Hao
Liu

Tongxin
Li

Ufuk
Topcu

Yue, Yisong
WI 2018-19CS 101B Sec. 01 - Special Topics in Computer Science

0002043782.jpg

rbal@caltech.edu

Bal
Roshan Singh
Junior (CS)

0002019355.jpg

pbuabthong@caltech.edu

Buabthong
Pakpoom (Pai)
G3 (MS)

0001959087.jpg

michaelangelo@caltech.edu

Caporale
Michaelangelo Valentino 
Senior (ACM)

0002044133.jpg

sding@caltech.edu

Ding
Stephanie Qiu Li
Junior (CS)

0002014909.jpg

kpark2@caltech.edu

Park
Kinam (Danny)
Senior (CS)

0002015416.jpg

azwang@caltech.edu

Wang
Andrew Zeyu
Senior (CS)

11-Dec-18 11:41:04 AM

Stephanie
Ding


