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Learning to Optimize
as Policy Learning
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Policy Learning (Reinforcement & Imitation)

Goal: Find “Optimal” Policy

Imitation Learning:
Optimize imitation loss

ReinforcementLearning:
Optimize environmental reward

Learning-based Approach for
Sequential Decision Making

State/Context s,

St+1

>

Agent

Environment/ World




State/Context s,

Basic Formulation Agent

(Typically a Neural Net)
* Policy: m(s) = P(a)
/ 1

State Action

i S‘c+1

Environment/ Wor

K

* Roll-out: T = (SO, g, S1,A1, Sy, ... ) (aka trace or trajectory)

VoV

Transition Function: P(s’|s,a)

* Objective: Y, r(s;, a;)



Optimization as Sequential Decision Mal

* Many Solvers are Sequential
* Tree-Search

* Greedy
 Gradient Descent

* Can view solver as “agent” or “policy”
e State = intermediate solution
* Find a state with high reward (solution)
* Learn better local decision making

* Formalize Learning

 Buildsupon mo
 Theoretical Analysi:
* Interesting Algorith




Example #1: Learning to Search (Discrete)

Integer Program Tree-Search (Branch and Bou
o State = partial search tree
max — Z €T, (need to featurize)
=1 v~ [ Y ..
subject to:
r1 + a9 > 1, -
Tro + a3 > 1, Action = variable
Ty + 1 > 1, selection or branching

r3 + x5 > 1,

Ty + a5 > 1,

€T; € {O, 1},V’i c {1, Tt 75} Sparse Reward

@ feasible solution

[He et al., 2014][Khalil et al., 2016] [Song et al., arXiv]



Example #1: Learning to Search (Discrete)

Integer Program Tree-Search (Branch and Bou

)

State = partial search tree
max — E €T, (need to featurize)

i=1 N [ Y e
subject to:

r1 + 19 > 1. »

Ty + a3 > 1, Action = variable

T + a4 > 1. selection or branching

1+ Deterministic State Transitions
l* Massive State Space
|* Sparse Rewards Sparse Reward

@ feasible solution

[He et al., 2014][Khalil et al., 2016] [Song et al., arXiv]



Example #2: Learning Greedy Algorithms (discret

s Submodu
Contextual Submodular Maximization: argmax E, (W)

Y: ||
¥i=p / \ Selec

* Greedy Sequential Selection: Context / Environment

s YV «W@P argmaxF,(YDa)
a

/

Not Available at Test Time

* Train policy to mimic greedy:
e 1(s) > a

/

States = (¥, x)

Dictionary of Trajectories Select

Learning Policies for Contextual Submodular Prediction S. Ross, R. Zhou, Y. Yue, D. Dey, J.A. Bagnell. ICM



Example #2: Learning Greedy Algorithms (discret

s Submodu
Contextual Submodular Maximization: argmax E, (W)

Y: ||
¥i=p / \ Selec

* Greedy Sequential Selection: Context / Environment

s YV «W@P argmaxF,(YDa)
a

/
Not Available at Test Time m& [II[E

* Train policy to mimicgreedy: |e Deterministic State Transitions
) ”(;) —a * Massive State Space
States = (¥, x) e Dense Rewards |
 Note: Not Learning Submodula

Learning Policies for Contextual Submodular Prediction S. Ross, R. Zhou, Y. Yue, D. Dey, J.A. Bagnell. ICM



Example #3: Iterative Amortized Inference (cont

» State= description of problem & curr

Gradient Descent Style Updates: . )
* Action = next point

T~ ~0.25
1.0 = —— ¢ lterative Inference Model ’
. Q</ Y  Global Maximum .'.‘
SR —0.30 -
0.5 > \ \‘ I"\
—0.351 "'.\
g 00 o
—0.40 .-‘
—05 1 IR T i
—0.45h T
I — NS/
0 \\ I )
0. 2.0 0025 130 135 140 1.45

H1
Useful for Accelerating Variational Inference

Iterative Amortized Inference, Joe Marino, Yisong Yue, Stephan Mandt. ICML 2018



Example #3: [terative Amortized Inference (cont

» State= description of problem & curr

Gradient Descent Style Updates: . )
* Action = next point

—0.25

————— # - lterative Inference Model
Y  Global Maximum

i) . ~_ ¥

 (Mostly) Deterministic State Transitions
* Continuous State Space
-0ol*  Dense Rewards

 Simplest Case: One-Shot Inference
“Variational Autoencoders” [Kingma & Welling, ICLR 2014]

. UL U.J .U L) - T.oo) ™ L)) LW}()
H1 H1 -

Useful for Accelerating Variational Inference

1.0

0.5

Iterative Amortized Inference, Joe Marino, Yisong Yue, Stephan Mandt. ICML 2018



Optimization as Sequential Decision Mal

Learning to Search

* Discrete Optimization (Tree Search), Sparse Rewards
e Learning to Search via Retrospective Imitation [arXiv]

* Co-training for Policy Learning [UAI 2019]

Contextual Submodular Maximization

* Discrete Optimization (Greedy), Dense Rewards

* Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Infer

e Continuous Optimization (Gradient-style), Dense Rewards

* Iterative Amortized Inference [ICML 2018]
* A General Method for Amortizing Variational Filtering [NeurIPS 2018]

}\

Jialin

Stepha

Joe N



Optimization as Sequential Decision Mal

Learning to Search

* Discrete Optimization (Tree Search), Sparse Rewards

=)

Jialin

e Learning to Search via Retrospective Imitation [arXiv]

* Co-training for Policy Learning [UAI 2019]

Contextual Submodular Maximization

* Discrete Optimization (Greedy), Dense Rewards

* Learning Policies for Contextual Submodular Prediction [ICML 2013]
Stepha

Learning to Infer

e Continuous Optimization (Gradient-style), Dense Rewards

* Iterative Amortized Inference [ICML 2018]

* A General Method for Amortizing Variational Filtering [NeurIPS 2018]



Learning to Optimize for Tree Search

e |dea #1: Treat as Standard RL

* Randomly explore for high rewards
* Very hard exploration problem!

* [ssues: massive state space & sparse rewards



Learning to Optimize for Tree Search

e |dea #2: Treat as Standard IL

* Convert to Supervised Learning
 Assume access to solved instances

“Demonstration Data”
* Training Data: D, = {(ﬁ&,@)}

* Basic IL: argmin L (1) = E (5 gy~p, [£(a,7(s))]

| mtell l

Behavioral Cloning




Challenges w/ Imitation Learning

* I[ssues with Behavioral Cloning
* Minimize Lp ... implications?
* If T makes a mistake early, subsequent state distribution= D, ??
* Some extensionsto Interactive IL [He et al., NeurlPS 2014]

Our Approach is also Interactive IL

 Demonstrations not Available on Large Problems
 How to (formally) bootstrap from smaller problems?
* Bridging the gap between IL & RL

Our Approach gives one solution



Retrospective Imitation

Jialin

: S
* Given: one
* Family of Distributions of Search problems Difficulty levels: k=1,...,

* Family is parameterized by size/difficulty

e Solved Instances on the Smallest/Easiest Instances
 “Demonstrations”

* Goal:
* |Interactive IL approach
* Can Scale up from Smallest/Easiest Instances
* Formal Guarantees

Connections to Curricul
& Transfer Learning

Learning to Search via Retrospective Imitation, Jialin Song, RavilLanka, et al., arXiv



Retrospective Imitation

* Two-Stage Algorithm

* Core Algorithm
* Fixed problem difficulty Interactive IL w/ Sparse Environme

* Reductionsto Supervised Learning

* Full Algorithm w/ Scaling Up

» Uses Core Algorithm as Subroutine

Learning to Search via Retrospective Imitation, Jialin Song, RavilLanka, et al., arXiv



Retrospective Imitation (core Algorithm)

Roll-out Trace
Expert Trace

Repeat

B Retrospective Oraclel
(Algorithm 2)
(D Initial Learning

Imitation
Learning
Policy

Supervised Learning
Reduction

@ Policy Update with Further Learning

Retrospective Oracle Feedback

Region B Env

Learning to Search via Retrospective Imitation, Jialin Song, RavilLanka, et al., arXiv



Retrospective Imitation (rull Aigorithm)

L Problem
Initialize k=1 o T R A
Difficultyk | nstances& - Core Algo
Demonstrations R o
Initialize B Sol I
Gurobi/SCIP/CPlex ase >olver

k=k+1
Use trained it

Learning to Search via Retrospective Imitation, Jialin Song, RavilLanka, et al., arXiv



Core Algorithm

* Does this converge?
. . |+ Convergestowhat? | " ¢

Roll-out Trace
Expert Trace ;

3 Retrospective Oraclel
(Algorithm 2)
(D Initial Learning
A
Imitat'ion @ Policy Update with Further Learning
Learning [«
Policy J Region A /" /%
iy \\‘ /l,' \‘.\‘
Retrospective Oracle Feedback ./

Region B

Learning to Search via Retrospective Imitation, Jialin Song, RaviLanka, et al., arXiv



Imitation Learning Tutorial (cmL201s)

https://sites.google.com/view/icml2018-imitation-learning/

Yisong Yue Hoang M. Le

yyue@caltech.edu hmle@caltech.edu
Yy @YisongYue @HoangMinhLe

@ yisongyue.com hoangle.info




Issues w/ Distribution Drift & Imitation S

* Demonstrations from initial Solver: Dy = {(ﬁ&;ﬁ&)}
7
| |

“correct” decision in this stat

Which input states?
Correct relative to what?

* Supervised learning: argminLp () = E(g gy~p,[f(a, m(s))]
l mell

Oracle call to TensorFlow/PyTorch/etc...

If T achieves low error on D, so what?



Interactive Imitation Learning (core Alg)

* First popularized by [Daume et al., 2009] [Ross et al., 2011]

* Basic idea:
* TrainT;_; = argmin LDi_l(TC) Supervised Learning
tell
i=i+l
* Roll-outm;_4, collecttraces {7} Run on instances

O « Demonstrator converts {t} into per-state feedback: D;  Depends on

* D;=D;UD;_4 Data aggregation

Search-based Structured Prediction, Daume, Langford, Marcu, Machine Learning Journal 2009
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross, Gordon, Bagr



. . . Learns to Correct its Own Mié
Interactive Imitation

Convergence Guarantees:

M : /
_ . * =0 Lp,(;) = mingep )
* First pOpUIanzed by [Daume et all e Follow_the_Leader argume
* Also studied in [He etal., Neurl

e Basic idea:

* Trainm;_4 = argmin Lp._ (1)
mell

Requires defining “correct”
 Retrospective Oracle

i=i+l
* Roll-outm;_4, collecttraces {7} Run on instances

O « Demonstrator converts {t} into per-state feedback: D;  Depends on

* D;=D;UD;_4 Data aggregation

Search-based Structured Prediction, Daume, Langford, Marcu, Machine Learning Journal 2009
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross, Gordon, Bagr



Retrospect
71 Policy Rollout

% : best solution found by 717 ./ . R



Retrospect
Retrospective Oracle Feedback

Feedback: (red > white)
for all (red, white) pairs
in the trajectory



eeeeeeeeee
79 Policy Rollout




Retrospect
Retrospective Oracle Feedback

Feedback: (red > white)
for all (red, white) pairs
in the trajectory




Retrospect
73 Policy Rollout

1
)



Core Algorithm Summary

* Sequence of Learning Reductions

* Leverages Retrospective Oracle to Define “Correct”
* Relies on sparse environmental rewards

e Convergesto near-optimal policy in class
* Offloads computational challenges to Supervised Learning Oracle

* For supervised learning error &€:

H* Optimal Search Le
(typically # intege

Expected Search Length =

1-2¢

Learning to Search via Retrospective Imitation, Jialin Song, RaviLanka, et al., arXiv



Guarantees for Full Algorithm

* Run " on problems of difficulty k+1

* |Initial demonstrations for the harder problem instances

* Suppose: we could have run external solver on harder instanc
Gurobi/SCIP/CPlex/E

* Suppose: search trace includes feasible solution of external sc

* Then 1t¥ is as good as using original external solver!

* (might take longer to converge)

Learning to Search via Retrospective Imitation, Jialin Song, RaviLanka, et al., arXiv



Retrospective DAgger vs Heuristics for
MILP based Path Planning (budget=2k)

200
Retrospective DAgger
175 (selegt only)
— —e— Gurobi
150 4 CIP \
SCIP
| £ 125 -
Ll o
. Gurob
| <. 100 |
| £
@l £ 75-
a
®)
50 -
V Our Appro
25 - /
| /
04 e ——
/ L Ll l L I
10 11 12 13 14
Initial demonstrations (400) (440) (480) (520) (560)

only at smallest size!

Way points (# binary variables)

Learning to Search via Retrospective Imitation, Jialin Song, RavilLanka, et al., arXiv



Optimality Gap (%)

Comparisons w/ Conventional IL

SMILe Comparisons for MILP based

DAgger Comparisons for MILP based Path Planning 100
100 - Retrospective SMiLe
—— eelectonlyy 99 — (select only)
DAgger Extiapolation 80 SMILe Extrapolation
80 1 (select only) (select only)
1 ]
60 - %_ 60 [  E—
&
2
i T 40 A
%0 =
a
o)
20 4 20 A
04 e " - . )\ 04— - -
10 11 12 13 14 10 11 12
(400) (440) (480) (520) (560) (400) (440) (480)

Way points (# binary variables)

Way points (# binary variabl

Learning to Search via Retrospective Imitation, Jialin Song, RavilLanka, et al., arXiv



Retrospective Imitation

* Two-Stage Algorithm
* Leverages Supervised Learning Oracle

* Initial demonstrations on small problems

* Exploits sparse environmental reward
* “Retrospective Oracle”

* lteratively scale up to harder problems

Problem
Difficulty k

Base Solver

Instances &
Demonstrations

—>

k=k+1
Use trained



Co-Training for Policy Learning
(Multiple Views)

Example: Minimum Vertex Cover Jialin

max — E €T,

i=1
subject to:
r1 + a9 > 1,
ro + 13 > 1,
r3 + x4 > 1.
T3 + Is Z 1

T4 + Ts Z 1,
/ y
@/ \‘D v; €{0,1},Vi e {1,---,5)

Graph View Integer Program View
(Branch & Bound View)
[Khalil et al., 2017] [He et al., 2014]




Co-Training for Policy Learning
(Multiple Views)

Example: Different Types of Integer Programs

.rTQ.r >
hr=gs !

ILP QCapP



Co-Training [Blum & Mitchell, 1998]

* Many learning problems have different sources of information

* Webpage Classification: Words vs Hyperlinks

Prof. Avrim Blum My Advisor Prof. Avrim Blum My Advisor

Avrim Blum's home page Page I of | Avrim Blum's home page Page 1 of |

Avrim Blum
Professor of Computer Science

Avrim Blum
Professor of Computer S

ce

Department of Computer Science
Carnegie Mellon Universi
Pittsburgh, PA 152
avrim at es.cmu.edu

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891
avrim at es.cmu.edu

Office: Wean 4130 Office: Wean 4130
Tel: (4 Te 268-6452
(412) 268-5576

in icole Stenger, Wean 4116, 268-3779 A Nicole Stenger, Wean 4116, 268-3779
Check out our new faculty members Ryan O'Donnell and Luis von Ahn. Check out our new faculty members Ryan O'Donnell and Luis von Ahn.
My main research interests are machine leaming theory, approximation algorithms, on-line algoriths, My main research interests are machine leaming theory, approximation

and algorithn
of Computer Science;

ic game theory. I was/am on the Program Committees for FOCS 2008 (Symp. Foundations

rithms, on-line algorithms,
'
). ACM-EC 2008 (Electronic Commerce), and COLT 20

mic game theory. I was/am on the Program Committees for FOCS 2008 (Symp.
(Conference on er Science), ACM-EC 2008 (Electronic Commerce), and COLT 2007 (Conference on

Leaming Theory), and was recently local organizer for COLT 2006 and FOCS 2005. 1 also co-organized ry), and was recently local organizer for COLT 2006 and FOCS 2005. 1 also co-organized
the 2003 Foundations of Computational Mathematics Workshop on Algorithmic Game Theory and the 2005 Foundations of Computational Mathematics Warkshop on Algorithmic Game Theory and
Metric Embeddings. A while back I served as Program Chair for FOCS 2000 and I've done some work Metric Embeddings. A while back I served as Program Chair for FOCS 2000 and I've done some work
in Al Planning. For more information on my rescarch, see the publications and rescarch interests links in Al Planning. For more information on my rescarch, see the publications and rescarch interests links
below. I am also affliated with the Machine Learning department below. I am also affliated with the Machine Learning department

Iam currently (Spring 2008) teaching 15-859(B) Machine Leaming Theory. Tam currently (Spring 2008) teaching 15-859(B) Machine Leaming Theory.
9 Publications @ ALADDIN, Algorithms and Complexity Group 9 Publications @ ALADDIN, Algorithms and Complexity Group
@ Rescarch Interests @ ACO Program Home Page @ Rescarch Interests @ ACO Program Home Pa
@ Survey Talks @ Theory Seminars, Theory lunch ML lunch @ Survey Talks @ Theory Seminars, Theory lunch ML lunch
9 Courses @ Family pictures, Other pictures, My Startup Page 9 Courses @ Family pictures, Other pictures, My Startup Page

@ My Tutorial on Machine Learni

eory given at FOCS 2003 and a short essay @ My Tutorial on Machine Learn

Theory

en at FOCS 2003 and a short essay

My advisees: Aaron Roth, Katrina Ligett, Nina Balcan, M

i Robert Rwebangira, Shobha My advisees: Aaron Roth, Katrina Li

Nina Balcan, Mugizi Robert Rwebangira, Shobha

x - Link info & Text info x;- Link info X,- Text info

(Taken from Nina Balcan’s slides)



What’s Different about Policy Co-Training

* Sequential Decisions vs 1-Shot Decisions

* (Sparse) Environmental Feedback
* Can collect more “labels” (Not always applicable)

max —

* Different Action Spaces
e Graph vs Branch-and-Bound

subject |
T1 + T2
To + X3
T3 + X4
xrs + T
T4 + X5
x; € {0

Co-training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019



[1] “Learning combinatorial optimization algorithms over grap
[2] “Learning to Search in Branch and Bound Algorithms” [He

el B [3] “Learning to Search via Retrospective Imitation” [Song et a
Intuition

E.g., [1]

MVC Instance

5
max — E €T,

i=1

subject to:
E.g., [2,3] T+ 20 > 1,
To + a3 > 1,
xr3 + x4 > 1,
xr3 + x5 > 1,
xy + x5 > 1,
x; € {0,1},Vie {1,--- .5}



Intuition

MVC Instance

E.g., [1]

E.g., [2,3]

[1] “Learning combinatorial optimization algorithms over grap
[2] “Learning to Search in Branch and Bound Algorithms” [He
[3] “Learning to Search via Retrospective Imitation” [Song et a

5
max — E T,

i=1

subject to:
€T + €I9 2 1,

€T9 + xrs Z 1

xr3 + x4 > 1,
xr3 + x5 > 1,
xy + x5 > 1,
x; €{0,1},Vie {1,--- .5}

v

Il
[ =)

I

T2

L3

T4
Ty —

Bette



Intuition

MVC Instance

E.g., [1]

E.g., [2,3]

5
max — E T,

i=1

subject to:
€T + €I9 2 1,

To + a3 > 1,
xr3 + x4 > 1,
xr3 + x5 > 1,
xy + x5 > 1,
x; €{0,1},Vi

[1] “Learning combinatorial optimization algorithms over grap
[2] “Learning to Search in Branch and Bound Algorithms” [He
[3] “Learning to Search via Retrospective Imitation” [Song et a

v

e{l.--,5)

Il
[ =)

I1

T2

T3

T4
Ty —

Demonstr

Bette



Theoretical Insight

* Different representations differ in hardness
e Goal: quantify improvement

(),: representation 2 easier

(),: representation 1 easier

Q: all problems

Co-training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019



(Towards) a Theory of Policy Co-Training

max

e Two MDP “views”: M1 & M2

e f172(¢1) = 12 (and vice versa)

subjec
z1 +
To +:
T+
T3+
T4+
x; €4

“Trajectory” / “Rollout”

e Realizingt! on M! < realizing 2 on M?

* Question: when does having two views/policies help?
* Policy Improvement (next slide)
* Buildsupon[Kanget al., ICML 2018]

e Optimality Gap for Shared Action Spaces (in paper)
* Buildsupon [DasGuptaetal., NeurlPS 2002]



Policy Improvement Bound 1 72 better

Q: allinstar

Standard for 1-step suboptimality JS Divergence of War
Policy Gradient of 7l on m?vs Tlon (2,

KL Divergence of ! vs 7’1 on .(2\ / 1-step suboptimal

2 (\4 1 \1 1+ 452 2 Ai
](nll) = J 1 (nll) K aﬂgf ZQZ 2 | 5§212
/ \ \ (1-v) T

Performance Approximation by Discount Derf Gl ¢ 2
of new policy sampling from 71 erzormance ap oln oV
(either RL or IL) J@e|M~0,) — J(m*|[M~(

Want to Maximize

Builds upon theoretical results from [Kang et al., ICML 2018]



Policy Improvement Bound (Summary)

2y (ageq + 4,352 5(2 )
(1-y)?

J@'t) = Ja(a'™) - 6§

* Minimizing ,85222 - low disagreement between 2 vs 1

* Maximizing 552 - high performance gap 7% over ! on some



CoPIEr Algorithm (Co-training for Policy Learning)

‘ Sample M~} » Rollout

Runtl - 71

Update (only showing 1 view) Run 7

Augmented Obj: J (1) = ] (n') — AL(x', T")
Take gradient step

*

Exchange (only showing 1 version)

If ml better: 72 = f172(¢), 71 = ¢ «

If 72 better: 't = f271(1%), 7 = ¢

max — 2

subject to
T+ X9 2
To + X3 >
T3+ Ty
T3 + X5 ;
Ty + Ty 2
€xr; € {0]

Co-training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019
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BETTER

S
o

<

Performance gap compared to CoPiEr Final
o
o0

.
b

S
&

Performance comparison for Minimum Vertex Cover

Strong vs Baselines mmm Gurobi
(w/o Co-Training) ™= Graph (RL)

B non-CoPiEr Final
P BN ILP (DAgger)

Individual Views

100-200 200-300 300-400
#vertices in the graph

B Graph (CoPiEr)

B ILP (Retrospective imitation)
BN ILP (CoPiEr)

B CoPiEr Final

CoPiEr Final Outperforms

Strong vs Gurobi

400-500



Ongoing: Integration with ENav

Ravi Hiro C
Lanka Ono T
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Ongoing: Additive Manufacturing ﬁ w B

Stephanie  Jialin
Ding Song

* Planning for 3D Inkjet Droplet Printing
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lterative Amortized Inference
(for Deep Probabilistic Models)

= = —0.25 _
1.0 § ~#- Iterative Infumu Model ¢ —200
Q < * Global Maximum H
Y \, ) —0:30 ‘ —300
0.5 \
—0.35 '
g 00 ’ —400 E
W —0.40
—0.5 i —500
—0451 e
~1.0 o —600
0.5 4
-0.5 0.0 0.5 1.0 1.5 200025 130 135 140 145 150
1 M1 =700

Related to “Learning to Learn” [Andychowicz et al., 2016]

Iterative Amortized Inference, Joe Marino et al., ICML 2018

L( nat

—100

—200

—300

—400

—500

—600

—700

(a'd

Ll

- — SGD
- —— SGD
L —— RMS
o ——  Adal
L —— ltera

50 100 150

Inference Iterat

A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurlPS 2018



Ongoing: Amortized Planning

Learning dynamics:

T't
f reward (at7 St)
(at7 St) a
fstate(at7 St) St+1
Planning: /
ai,az,...,ar
Optimize:
T
max Z freward (fstate (ét—la at—1)7 at)
ajl,...,.aT

t=1

Baseline: Gradient-based F

Can use (offline) training t



Learning to Optimize as Policy Learning

* Optimization as Sequential Decision Making

* Formulate New Learning Problems
e Buildsupon RL/IL

* Interesting Algorithms
* Theoretical Analysis/Guidance
* Good Empirical Performance

State/Context s,

Agent

Environment
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Milan Robin  Debadeepta Stephan Hiro Drew  Uduak Sar?dipan Olivier
Cvitkovic  Zhou Dey Mandt Ono Bagnell  Inyang-Udoh Mishra Toupet 2

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv
Co-Training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019

Learning Policies for Contextual Submodular Optimization, Stephane Ross et al., ICML
Iterative Amortized Inference, Joe Marino et al., ICML 2018

A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurlIPS 2(

https://github.com/ravi-lanka-4/CoPiEr
https://github.com/joelouismarino/iterative inference




